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SUMMARY 
This paper deals with the stability of a two-dimensional laminar 

jet against the infinitesimal antisymmetric disturbance. The  curve 
of the neutral stability in the (a, R)-plane (a ,  the wave-number; 
R,  Reynolds number) is calculated using two different methods 
for the different parts of the curve ; the solution is developed in 
powers of (aR)-l for obtaining the upper branch of the curve 
and in powers of aR for the lower branch. 

The  asymptotic behaviour of these branches is that for 
branch I, a + 2 ,  c +  f for R - t  co ; and for branch 11, 
R - 1 - 1 2 ~ - ~ / ~ ,  c N 1*20a2 for a+O. Some discussion is given 
on the validity of the basic assumption of the stability theory in 
relation to the numerical result obtained here. 

1. INTRODUCTION 
A large part of the theory of hydrodynamical stability, as it has been 

developed in the past, is concerned with the question whether an essentially 
parallel flow is stable or not against injinitesimal disturbances. Within 
this limitation the theory has been successful in predicting the stability 
characteristics of a number of typical laminar flows, its results having 
be'en supported satisfactorily by experiments. 

The  application of this theory, however, has hitherto been confined to 
flows with at least one solid boundary, and little is known about the stability 
of boundary-free flows such as a laminar jet, wake, and mixing region between 
parallel flows. This may not be surprising in view of the fact that the free 
flow, having at least one inflexion point in its velocity profile, is supposed to 
be highly unstable so that its critical Reynolds number is very small. For 
such a small Reynolds number the usual methods of asymptotic approxi- 
mation for large Reynolds number become ineffective and a new method 
of approximation must be introduced. The  more fundamental difficulty 
of the boundary-free case, however, lies in that the basic assumption of the 
hydrodynamical stability theory that the undisturbed flow is approximately 
parallel is not satisfied for smaller Reynolds numbers, because then we can 
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neglect neither the lateral velocity component nor the change in the 
longitudinal velocity profile. Thus, the investigation of the stability of 
free flows under the framework of the existing stability theory appears to 
lead to self-contradictory results. The present calculation on the two- 
dimensional laminar jet seems to confirm this anticipation ; the critical 
Reynolds number is found to be only 4.0, associated with the wave-number 
u = 0.2. 

The stability of the laminar jet has been already dealt with by Curle 
(1957), using a new method of approximation which was devised by McKoen 
(1957) and himself, especially for investigating the stability of free flows. 
Their method is essentially to reduce the fourth-order disturbance equation 
to a second-order one, using some physical considerations. However, to 
neglect the fourth-order term in the equation does not seem allowable for 
small wave-number even when the Reynolds number is fairly small. More- 
over, Curle's way of approximating the unknown stream function by the 
linear combination of two inviscid solutions is quite arbitrary and a different 
choice of the combination factor may lead to a different value of the critical 
Reynolds number. 

The principle of the calculation adopted in this paper is quite simple. 
Solutions are expanded into inverse power series of a R  for large value of aR, 
and. in ascending series of u R  for small aR. In  practice, solutions are 
calculated up to the second- and third-order term for the above series 
respectively. Unfortunately, owing to the slow convergency of the series, 
we have not been able to work out the entire curve of neutral stability in 
the (u, R)-plane. But the branch of the curve for u+O is sufficient for 
determining the critical Reynolds number. 

2. FORMULATION OF THE PROBLEM 

The basic flow under consideration is the two-dimensional laminar jet 
ejected from an infinite line orifice. The velocity distribution of this flow 
was calculated by Schlichting (1933) and Bickley (1937), giving the result 

where 

and 

m 

M =  1 u2 dy = const. (2.4) 
J - a ,  

represent the Reynolds number and the kinetic momentum flux of the flow, 
respectively. 
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It may be seen easily from (2.1) that for large Reynolds number R, 
the ratio v/u (= O(R,-2'3)) is small, so that the flow becomes nearly parallel. 
Moreover, since from (2.1) (au/ax)/u = O(x-l), the variation of u with x 
is also small for large values of x which are associated in general with large 
R,. Thus, the fundamental premise of the hydrodynamical stability theory 
that 

is approximately satisfied in this flow for large R,. Now let us assume 
that the condition (2.5) is satisfied, expecting R,  in the present calculation 
to be fairly large. I t  will be found later that the final result of the calculation 
does not always confirm this assumption, but this will be discussed in 5 7. 

We take U,  and L defined by (2.2) as the representative velocity and 
length of the flow, respectively, and make all variables non-dimensional 
with respect to these characteristic quantities. Denoting the dimensionless 
coordinates again by (x,  y ), the non-dimensional velocity profile is given 
from (2.1) by 

It is convenient to define another Reynolds number by 

which is related with R,  by 

The relation (2.8) shows that the discussion of the previous paragraph on 
the condition (2.5) is equally valid when R, there is replaced by R. 

By virtue of Squire's theorem (Squire 1933) we need consider only 
the two-dimensional disturbance, whose stream function may be defined by 

au/ax = 0, = 0, (2.5) 

U ( y )  = sech2y. (2.6) 

R = U0L/v (2.7 1 

R = ( ; ) 1 1 3 ~ 2 / 3 .  (2.8) 

+ = +(y)eiU(""), (2.9 ) 
where tl, being real and positive, represents the wave-number of the 
disturbance, and c is in general a complex constant. The  real part c, of c 
represents the phase velocity of the disturbance whereas aci, ci being the 
imaginary part, is the amplification factor. According as the values of ci are 
positive, zero, and negative, the basic flow becomes unstable, neutrally 
stable, and stable, respectively. 

Substituting (2.9) into the Navier-Stokes equations and neglecting the 
non-linear terms with respect to 4, we obtain the Orr-Sommerfeld equation 
for the disturbance : 

(2.10) 

where the primes represent differentiation with respect to y .  

that all disturbance velocities must vanish at infinity, that is, 
The  boundary condition for the disturbance is given by the requirement 

+'=a+ = 0  a t y =  03. (2.11) 

When U ( y )  is an even function of y, as in this case, we can consider the 
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antisymmetric and symmetric disturbances separately. Since the anti- 
symmetric disturbance is, on physical grounds, supposed to be more unstable 
than the symmetric one, and this is the case for flows with solid boundaries, 
we shall deal here only with the former disturbance. For antisymmetric 
disturbances, the boundary condition (2.11) reduces to 

+’(a) = ad( co) = 0, #(O) = +“(O) = 0, (2.12) 

and we need consider only the semi-infinite range y 2 0. 

3. SOLUTIONS FOR LARGE aR 
The analytical property of the solutions of the Orr-Sommerfeld 

equation (2.10) for large values of aR has been investigated in detail by 
previous researchers (see Lin 1955, ch. 8). Its four particular solutions 
are classified into two inviscid solutions and two viscous solutions. While 
the former two have non-vanishing values throughout the flow field for the 
limit aR+ co, the latter twovanish almost everywhere except inthe immediate 
vicinity of the solid walls. We need not therefore consider these viscous 
solutions in the present problem, where there is no solid boundary, so long 
as we are dealing with large values of aR. Foote & Lin (1950) clarified this 
point mathematically and concluded that the effect of viscosity enters the 
stability problem of the unlimited flow only through the higher approxi- 
mations of the inviscid solutions, and that the boundary condition at the 
origin C’(0) = +’”(O) = 0 (for the even solution) reduces to c$’(O) = 0. 
We therefore deal here only with the inviscid solutions which are obtained 
in the form 

4 ( Y )  = % (aR)-n+(n)(Y; a, c) .  (3.1) 
n=O 

Substituting (3.1) into (2.10) and equating terms of the same powers of aR 
on both sides, we obtain the following equations: 

] (3.2) 
( u - .)(c$CO,.. - a24‘0’) - U”p = 0, 

(u- c)(+bl”- $+(”)) - u”+C%) = - i(+@-1YV - 2a24((n--1l” + a4+(~~--1)), 

for n 2 1.  
The solution of (3.2) is first calculated in three separate regions of the 

flow field: (i) the region far outside of the core of jet, (ii) the region near 
the critical layer at which y = y e ,  and (iii) the region around the centre. 
Then, on joining these solutions analytically at two boundary points of 
these three regions, we obtain the solution over the whole flow field. 

For large y the velocity profile may be written in 
the form 

(i) Outer solution. 

rn 
U ( y )  = 4 c 2 *  2 ( -  l ) m ( m  + l)e-2mu, (3.3) 

m=O 
so that 
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where 
4 

A, = - (1 - 2c)A,, 
16 A,= -c, 

C 

1 4 
C2 C 

A, = - ( 1 6 - 4 0 ~ + 2 7 ~ ~ ) A , ,  A, = 3 (16-48c+46c2- 16c3)A1, ... . 
Substituting (3.4) into (3.2) and taking account of the first two boundary 

conditions of (2.12)’ we obtain the following solutions for large y : 

c 

C 
b3 = 

(ii) Critical-layer solution. In the neighbourhood of the critical layer 
y = y o  where U(yc )  = c, the solution is expanded in a power series of 
(y - yc). Substituting the Taylor series expansion 

1 u-c = UL(y-y,)+ - 2 !  u;(y-yc)2+ ... 
into the first equation of (3.2)’ we obtain a pair of independent particular 
solutions for +(O) as follows : 

OD 

4‘:) N y‘y) = C, 2 f m ( y - ~ , ) ~ ,  
m = l  

P) 

4(;) Y(;) = cJ( m=O 2 g,(y -yep + UE Y(y) hg(y - yc ) } ,  J 
where C2 and C,  are integration constants and 

The way of choosing the proper branch of log(y-y,) in Y(g) has been 



266 T.  Tatsumi and T. Kakutani 

established by earlier workers (see Lin 1955, p. 130) with the result that 
if u,' < 0, as in this case, 

h d Y  - Y J  = W Y  -Ycl for y-yc > 0, 
log(y-y,) = log/y-y,l +h for y-yc < 0. 

T h e  second-order solution #(l) is obtained from the second equation 
of (3.2) by quadrature and two particular solutions are expressed in terms 
of the #Jo)'s as follows : 

u 
40) 3 N yy = yep, 1 M j  yc;) dy - yy Mi ycy dy, (3.7) 

where 
M .  = - q u- c)-yy(v)iv 3 - 2a2~rw" + a 2 y y ,  j = 1, 2. 

T h e  determination of the proper logarithmic branch must be carried 
out in the same way as for Y'(:). It should be noted here that the solution 
Y(i) is O{(Y-~ , ) -~}  in the neighbourhood of the critical point, so that the 
solution Y(k) loses its meaning there. Since, however, we are not concerned 
with the eigenfunction itself but only with the eigenvalues of a, R and c, 
a good approximation at the joining points of the solutions ( y ,  and y2 in $4) 
is sufficient for the present purpose. I n  fact this is attained in the present 
case, because the joining points are fairly distant from the critical point 
and the coefficients of the singular terms in are small for small (c - c,)/c, 
(c ,~ is the limiting value of c for aR+ oo), and therefore the singular terms 
are insignificant at the joining points. 

(iii) Inner solution. For small value of y the velocity distribution may 
be written in the form 

m 

U - c  = 2 F,Y,~', (3.8) 
m=O 

where 

and the B's are the Bernoulli numbers. 
Substituting (3.8) into (3.2) and taking the third boundary condition 

of (2.12) into account, we obtain the solution in the neighbourhood of the 
origin as follows: 

(3.9) I m 
#(O' N Q(0) = c, 2 h,yZrn, 

+(I) N ncn = c, 2 K,y2,, 

m=0 

m 

W k = l  

where 
1 1 

2FO 12F0 h, = 1, h, = - ( d F 0  + 2F1), h, = - ((a2F, + 12F2) + a2Fo hl},  

1 
h - - {(a2F2 + 30F3) + (G?F~+ 10F2)hl + (E'FO - lOF,)h,}, 

- 30F0 
1 

h, = 56F, {(a2F3 + 56FJ + (a", + 28F3)h1 + a2Fl h, + (a2Fo - 28F1)h3}, ... ; 
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2 
- - - (24h2 - 4dh1-t a‘’), 1 -  

2Fo 
1 .  K ,  = - { - i(360h3 - 24a2h, + a4h1) + a2Fo K l ] ,  

12Fo 
1 

30F0 
k3 = - { - i(  1680h, - 60a2h, + a4h2) + (a2Fl + 10F,)kl + (a2Fo - 10Fl)K,), 

... . 

4. BOUNDARY VALUE PROBLEM FOR LARGE aR 
We now proceed to join the outer, critical-layer, and inner solutions 

analytically at some appropriate points, y 1  and y,, say, each located on the 
boundaries of the three regions. Noting that the system of equations (3.2) 
is of the second order, we can easily see, extending Foote & Lin’s (1950) 
analysis, that the effect of the viscous solution does not enter the eigenvalue 
problem and that the analytical continuation of the solution is simply carried 
out by making the functional value and the first-order derivative of the 
solution continuous at y 1  and y 2  instead of doing so up to the third-order 
derivatives. If this process is carried out the solution thus obtained will 
satisfy all the boundary conditions of (2.12),  because the outer and inner 
solutions derived in 5 3 already satisfy the respective boundary conditions 
fory--t co and y = 0. 

First, joining the outer and critical-layer solutions at y1 (yc  < y1 < co), 
we have 

The  similar relationship between the critical-layer and inner solutions 
is obtained by the continuation at y 2  (0 < y ,  < y,.) : 

Eliminating C,/C2 from (4 .1)  and (4 .2) ,  we obtain the eigenvalue equation 
reliting the parameters a,  R and c :  

E(a, R, C) = 0. (4-3 1 
We are particularly interested in finding the condition for the neutral 

Putting ci = 0 in (4.3) and solving the complex equation, disturbance. 
we can express a and R as functions of c 

a = Q(c), R = R(c).  (4.4) 

cc = 2, 

The  limiting case of the problem for aR+ cc was solved by Savic 
(1941). According to his results, 

so that 
U”(y,) = 0, 

c = U(y , )  = 2 3, 

and the solution (for the antisymmetric disturbance) is given by 
4 = const. x sech2y. 
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For large uR the corresponding value of c may be expected to be not 
far from the limiting value c, = $. Then, for a number of the prescribed 
values of c in this neighbourhood we obtain an equation connecting a and R, 
and we can find the roots of u and R by trial and error. During this process 
we expand the coefficients of the critical-layer solutions into powers of 
c - c, and neglect the terms of higher order than (c  - c,)~. It  is found that 

2 

a 

C 

6 (C,) 
0.66 
0.65 
0.64 
0.63 
0.62 
0.61 
0.60 

2 (4 
1 *97 
1.93 
1.88 
1.84 
1 .so 
1.76 
1.71 

I 
Table 1. 

R 

03 
737 
270 
161 
116 
91 -9 
76.7 
66.5 

- Present result 

- Curie's result 

Figure 1. The curve of neutral stability in the (a, R)-plane. 

the real solutions are obtainable only for those values of c smaller than c, 
and that the approximation of the present solution becomes unsatisfactory 
for c < 0.6. In the process of continuation of the solutions, the points 
y1 = y,+0.2752 and yz = 0.5503 are used as the joining points, and the 
solutions are calculated up to the fourth term for 
and the seventh term for Y(y) and Y(i) respectively. The second-order 

the fifth term for 
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solutions are calculated to the same order of approximation as the corres- 
ponding first-order solutions. The  error caused by neglecting the 
remaining terms of each series is estimated to be at most 5 yo. T h e  numerical 
results are tabulated in table 1 and shown graphically in figure 1 (branch I) 
and figure 2. 

0.7, I 

0.5 

C 

0 

I_ Curle's result 

1 Dc 
Figure 2. The curve of neutral stability in the (c, a)-plane. 

5 .  SOLUTIONS FOR SMALL uR 
We now proceed to  calculate the solutions for small values of uR. 

(D2 - a2)(O2 - tc2 + icrRc)+ = iaR{ U(+" - x2+) - U+), (5:l) 

where 0 = d/dy.  I n  the region far from the core of jet, that is, for large 
value of y ,  the velocity profile U ( y )  almost vanishes as well as all its spatial 
derivatives. Thus, the right-hand side of (5.1) being negligible in this 
region, the four particular solutions of (5.1) reduce to 

Equation (2.10) may be written as 

= eh'Y, e+BY, where p2 = u2-iuRc. (5.2) 
An approximate solution may be obtained by solving (5.1) with one 

of the solutions in (5.2) substituted on the right-hand side. Better solutions 
are derived by repeating this iteration process and we can express a formal 
solution for + in the form 

+ ( y )  = 5 ( i U w Y " ( Y ;  a, B), (5.3) 
n=o 

where the 4's are related to each other by the following equations: 

The  uniform convergence of the solution (5.3) for all UR can be shown 
Equation (5 .1)  together with the boundary conditions (2.12) as follows. 
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is equivalent to the following integral equation : 

where A and B are integration constants. 
to z = e-u  (0 < z < l),  equation (5.5) takes the following form: 

Changing the variable from y 

The iteration process suggested in the previous paragraph leads to the 
solution in powers of h 

so that 
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Thus, the series (5.7) as well as (5.3) converges uniformly for all values of 
h (=  i d ? ) ,  provided a < 2 and 9(/3) < 2. 

The system of equations (5.4) can be solved successively by the method 
of variation of parameters, leading to the result as follows : 

$0)- e-a1/, +$) = ea!t, +(:) = -BY,  +(:) = eflu * 1 
1 -  ' I  

I 
[ (5.8) 

for n 2 1, j = 1, 2, 3, 4. 

where the C's are arbitrary constants. 

The general solution of (5.1) is given by 

6 =  cl 4 1 + c 2 + 2 + c 3 + 3 + c 4 + 4 ,  (5.9) 

6. BOUNDARY VALUE PROBLEM FOR SMALL aR 
According to the first two conditions of (2.10), #2 and +4 are rejected 

and the lower limit of the integrals in (5.8) must be co. Then, in order 
that the second two conditions of (2.10) be satisfied by the solution (5.9) 
with not identically vanishing C ,  and C,, +1 and +, must satisfy the 
following condition : 

which gives the eigenvalue equation between the parameters a, R and c .  
Substituting (5.8) into (6.1), the characteristic equation becomes 

where 

We work out the solutions up to the second approximation and neglect 
terms of icrR of higher order than the third in equation (6.2). Then we have 
- (a2 - 82))" + ixR(a2 - p){I"'(+l) -J(l)(&)] + 

+ (iaR)2[(a2 - /32){1(2)(41) -J(2)(+3)} + 
+ 1(1)(+1)J(1)(43) - I(1)(+3)J(1)(+1)] = 0, (6.4) 

where the 1 ' s  and d ' s  are calculated using (5.8) and (6.3). 
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1 

0.6931 

In  order to work out the integrations in (6.4), it is convenient to approxi- 
mate the velocity profile U ( y )  (= 4e-2u/(1 + e-2u)2) by a polynomial in e-21’: 

U ( y )  = 2 Gke-2ku. 
m 

k = l  

I n  practice we adopt the following quartic 

U ( y )  = 3-87e-2U- 6.50e-4U + 5 . 6 k 6 U  - 1*98e-*?’, (6.5) 
which fits the exact velocity profile quite satisfactorily as shown in table 2. 
Although the profile given by (6.5) does not satisfy the condition U ( 0 )  = 0, 
this does not matter because all terms in (6.4) are expressed as integrals 
involving U alone. The  complex equation (6.4) substituted from (6.5) 

0.9975 

0.6861 

Y 

0 
0.10 
0.22 
0.36 
0.51 
0.69 
0.92 
1.20 
1.61 
2.31 

Exact U(y) 

1 
0.9972 
0.9879 
0.9689 
0-9375 
0.8889 
0.8163 
0.7101 
0.5556 
0.3306 

Approx. U(y: 

1 
1.0086 
0.9973 
0.9748 
0.9372 
0.8875 
0.8163 
0.7115 
0.5557 
0.3274 
-~ 

is rather cumbersome and therefore we again expand its second and third 
terms in powers of j3-a (= UU, say) and neglect terms of higher order 
than O(a3). Then, equation (6.4) takes the form 

1 +iR V(U, U) - R2 W ( a ,  U) = 0, (6.6) 

R = V,/Wf. (6.7) 
from which R is given by 

where the suffixes Y and i refer to the real and imaginary parts of the quantity, 
respectively. Eliminating R between (6.6) and (6.7), we obtain the equation 

from which u (or j3) is determined as a function of a. Substituting .(a) 
into (6.7), R ( a )  is obtained, and finally C(U) is calculated from the relation 

U 
c = - (1 - (1  +U)2). 

iR 
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A numerical calculation has been carried out for u = 0.1, 0.2, 0.3. For 
u >/ 0.4 the approximate equation (6.6) does not give a real root, and more 
laborious manipulation of (6.4) is necessary for obtaining the neutral 
curve for larger M .  Numerical results are given in table 3 and figure 1 
(branch 11) and figure 2. 

a R 

0.1 4.21 

C 

0.018 
0.2 4.02 0.061 

Table 3. 

7. DISCUSSION 
I t  may be seen from figure 1 that for large Reynolds number R the 

wave-number u decreases monotonically with R, although the change in u 
is not remarkable for R > 200. The  same tendency of the neutral curve 
was noticed by Lessen (1950) in the case of the mixing region. On the 
other hand, the upper branch of all existing neutral curves for the bounded 
flows behaves in a quite different manner ; M increases with decreasing R .  
It may therefore be inferred that the viscosity acts on the unlimited flows 
as a decaying factor, whereas it has the dual effect of decaying and amplifying 
the disturbances of bounded flows, although the two examples only may 
not be sufficient for so concluding. 

The  lower branch of the neutral curve gives the critical Reynolds number 

R = 4.0 at M = 0.2, (7.1) 

R, = 3.77. (7.2) 

which, according to (2.8), corresponds to 

The numerical values of the critical Reynolds number given by (7.1) and 
(7.2) may not be very realistic, because for such small Reynolds numbers 
like these the basic assumption of this calculation (2 .5 )  is not satisfied very 
well. For instance, the ratio of the lateral and longitudinal velocity 
components of the main flow becomes, from equation (2.1), 

e/a = 0.5 x (non-dimensional function) 
for R, = 3.77, so that the second assumption of (2.5) can no longer be 
valid under such circumstances. On the other hand, the first assumption 
of (2.5) is not directly affected by the numerical value of the Reynolds 
number because the ratio (au/ax)/u depends only on x. Rigorously speaking, 
therefore, all that we can say is that (7.1) gives the critical Reynolds number 
of an artificial flow with the velocity profile (2.6) which must be maintained 
by applying some sort of body force. T o  treat the stability problem of the 
non-parallel flow in a more satisfactory manner seems to be beyond the 
scope of the existing theory of hydrodynamical stability. Having ourselves 

P.M. s 
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no new ideas at the moment for improving the existing theory so as to 
be able to deal with the more general case, we content ourselves with taking 
the values given by (7.1) and (7.2) as a qualitative estimate of the critical 
Reynolds number of the laminar jet flow. 

The asymptotic behaviour of the lower branch can be obtained exactly 
without using the approximate formula (6.5). Retaining only the lowest 
order terms with respect to a in (6.4), we obtain 

. ,  
00 m 

where use is made of the relations 1 U dy = 1, 1 U y  dy = log2. If 
J o  J U  

we solve this complex equation with the relation P2 = a2 - iaRc, we obtain 
the asymptotic behaviour of the branch 

and 1 aR2 = 1.25 i.e. R = 1.12a-112, 

c = {4(aR2)-1- 2}a2 = 1.20a2. 
(7.4) 

With this relation (7.4) between a,  R and c, it is confirmed that the higher 
order terms in iaR which are neglected in (6.4) do not produce any term 
of the same order as those in (7.3), and therefore (7.4) gives the exact 
asymptotic behaviour of the neutral curve for a + 0. The asymptotic 
branch (7.4) is shown graphically in figures 1 and 2. 

The relation (7.4) shows that for a +- 0, UR tends to zero whereas R 
itself increases indefinitely. This confirms the self-consistency of the 
expansion (5.3) of the solution in ascending powers of aR. It should be 
noted here that the so-called inviscid solution, which corresponds to the 
limit aR --f co, has nothing to do with the lower branch of the present case 
which leads to the limiting ‘ inviscid ’ disturbance in the sense that R + co, 
UR + 0 for a + 0. This asymptotic behaviour clearly disproves Curle’s 
interpolation formula which expresses the unknown stream function as 
a linear combination of two inviscid solutions. It may also be interesting 
to note here that Pai (195 1) found that the flow is unstable for the combination 
of large value of aR and small a. He concluded from this that there is no 
lower branch of the neutral curve or the lower branch is very close to the 
R-axis in the (a ,  R)-plane. According to the present result, only the latter 
of his conclusions can be correct. 

In  figures 1 and 2 the neutral curve calculated by Curle is shown for 
comparison. His curve agrees fairly well with the present result so far as the 
upper region of the (a ,  R)-plane is concerned. This is not very unexpected 
because his first assumption of neglecting @” might be permissible for 
values of a which are not small and the possible error involved in his 
interpolation formula may also not be serious for small values of (c- c8)/c,. 
However, it may be too early to decide from this single example whether 
this agreement is entirely accidental or whether it gives some justification 
for McKoen and Curle’s new technique, at least, for the neglect of the 
+IT term on the upper branch of the neutral curve, 
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